

Recent technical developments for radioastronomical observations in VIRAC

Vladislavs Bezrukovs

Engineering Research Institute "Ventspils International Radio Astronomy Centre" of Ventspils University of Applied Sciences (VIRAC), Ventspils, Latvia

The International Workshop "RT-32 ZOLOCHIV: FIRST RESULTS, EU COLLABORATION, RADIO ASTRONOMY FRONTIERS" October 3-5, 2019, Zolochiv, Ukraine

Main areas of the VIRAC

Radioastronomy, astrophysics and space studies

Remote sensing

Sattelite technologies and electronics

High performance computing

A sustainable research excellence

Main target: to become a global research service provider in the field of space technology research, thus speeding up the international growth of companies in the engineering industry in Latvia and Ventspils.

VIRAC is carrying out this task by providing research and research services of high quality and client driven approach, in close cooperation with Ventspils University of Applied Sciences and other RTD organizations and companies with similar aims.

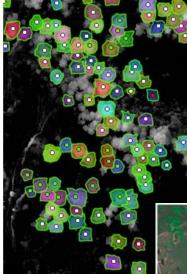
Ventspils International Radio Astronomy Centre - infrastructure

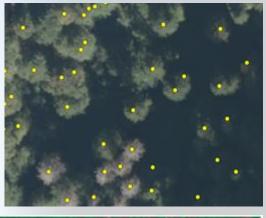
Ventspils University of Applied Sciences

Kristal

LOFAR station in operation from 2020

RT-16

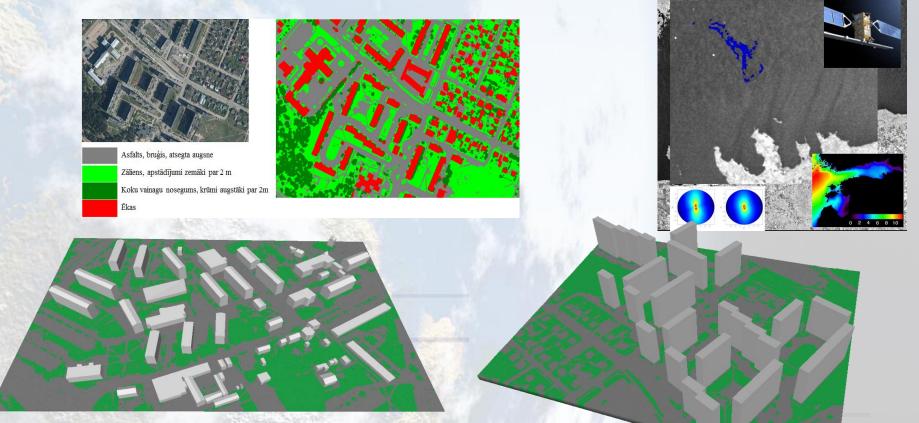



Remote sensing

1. Forest industry: monitoring forest resources

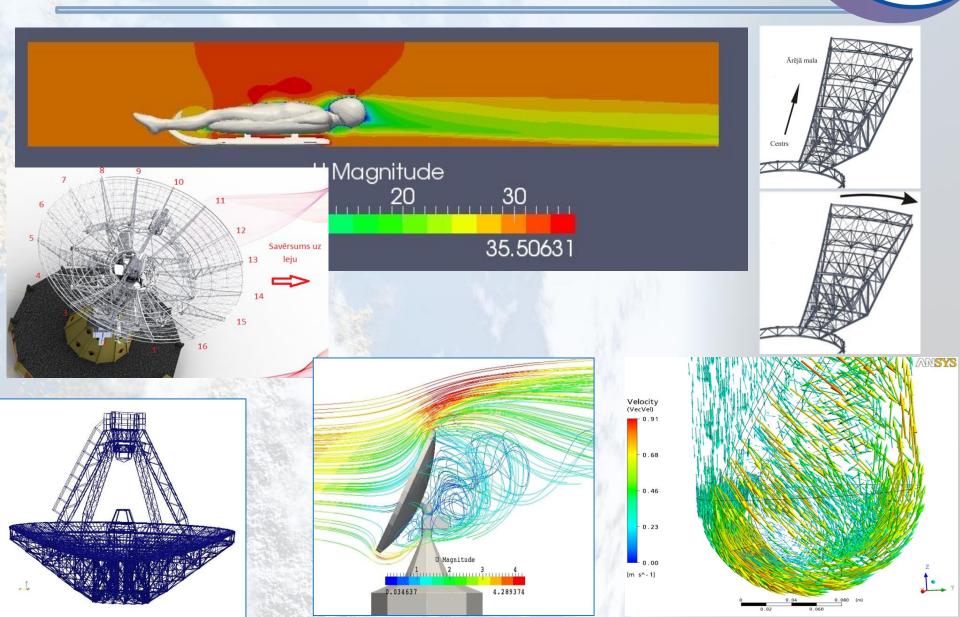
Estimation of forest inventory parameters using aerial images, Lidar data and satellite images Delineation of tree crowns using aerial images and Lidar data

VIRAC



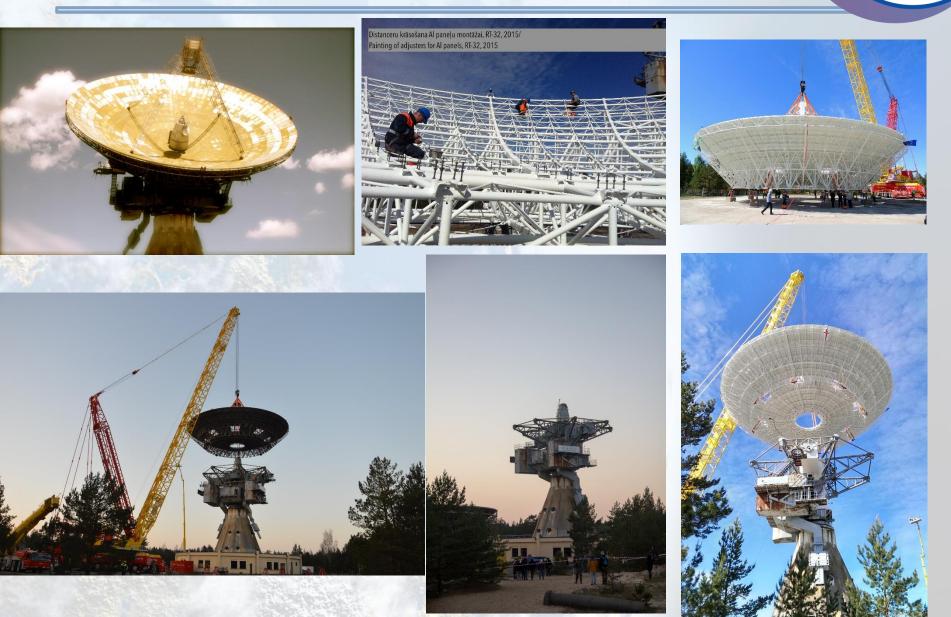
entspils Internation

Remote sensing


3. Environment protection: oil-spill recognition in natural water bodies using SAR images, coastline change detection using satellite images

4. Agriculture: precise agriculture using aerial, umanned aerial vehicle and satellite data

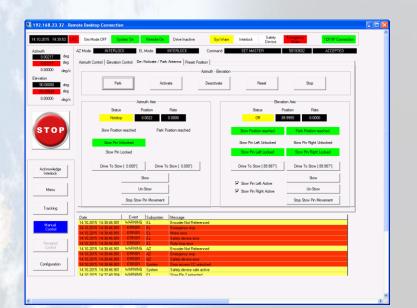
Engineering Physics HPC simulation



Satellite ground station at VeAUS VIRAC

RT-32 antenna surface and backup structure renovation

RT-32 Antenna Control Units



RT-32 vadības pults pirms modernizācijas, 2011/Control block before modernisation, 2011

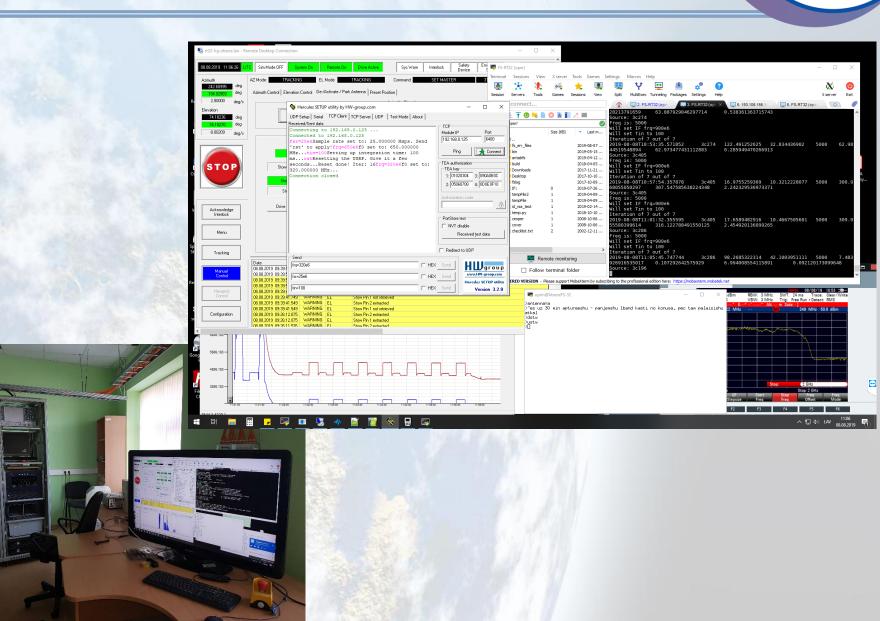
RT-32 mašīnzāle ar tikko uzstādītiem jaunajiem vadības un piedziņas sistēmas blokiem, 2015/ Control room of RT-32 with newly installed components of control and drive systems, 2015

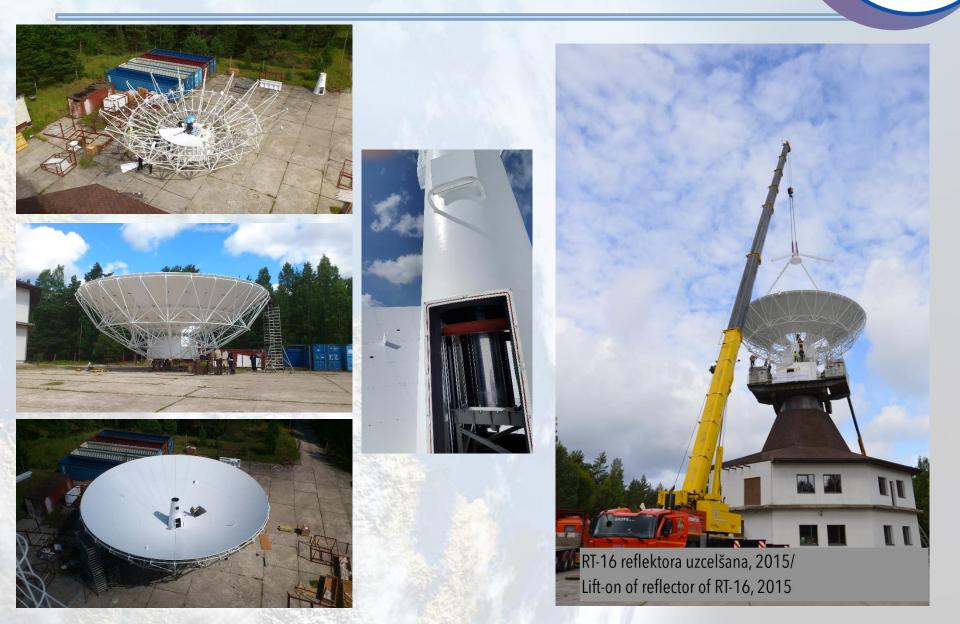
RT-32 old and new motors in the azimuth and Elevation

RT-32 horizontālās ass motoru komplekts, 2008/ RT-32 azimuth drives, 2008

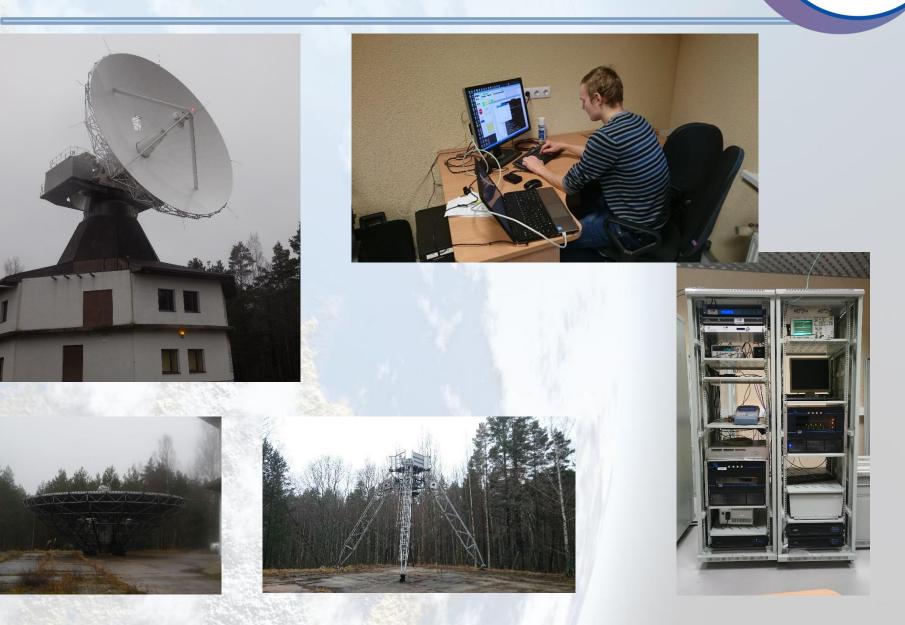
VIRAC

RT-32 azimuta piedziņas dzinējs un reduktors pēc modernizācijas, 2015 RT-32 azimuth drive and gear box after modernisation, 2015


RF laboratory and telescope control system


Telesocope control screen

VIRAC


RT-16: new 16 m antenna

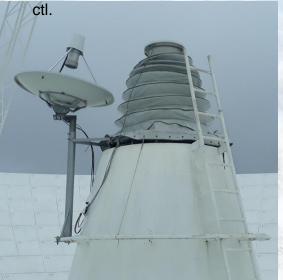
RT-16: new 16 m antenna

VIRAC

RT-16 antenna control units

VIRAC

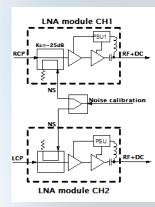
Broadband cryogenic receiver 4.5 – 8.8 GHz



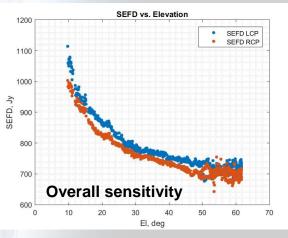
RF Sub-band	RF band (GHz)	IF Output (GHz)	Local Oscillator (GHz)	Image Band (GHz)	Main Working frequencies (GHz)	
1	4.5 - 5.5	0.4 - 1.4	4.1	2.7 - 3.7	5.01	
2	5.4 - 6.4	0.4 - 1.4	5.0	3.6 - 4.6	6.10	
3	6.4 - 7.6	0.3 – 1.5	6.1	4.6 - 5.8	6.70	
4	7.6 - 8.8	0.3 - 1.5	7.3	5.8 - 7.0	8.40 & 8.535 - 8580	

L band receiver

- Frequency ranges: 1.4-1.6 & 1.6-1.72 GHz
- LCP+ RCP polarizations
- Sensitivity: 700...900 Jy
- Noise injection cal., network remote


Feed antenna at secondary focus of RT-32 – tripple mirror system

Dual circular pol. 'warm' front-end

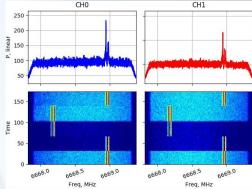


IF Unit

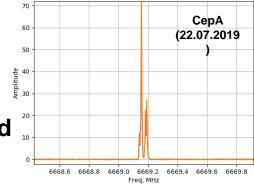
VIRAC

Block diagram of front-end

Spectral line registration back-end based on USRP X300 software defined radio



Spectrometer features:


- Up to 4 simultaneous channels, possibility to run multiple SDRs on single host computer.
- Supported sample rates or bandwidths: 0.195, 0.39, 0.78, 1.56, 3.125, 6.25, 12.5, 25, 50 MHz (under testing) ($F_s = 200/D$, where D = 2^N , N = 1, 2, 3, ...)
- Sample resolution: 14+14 bit (I+Q)
- FFT lengths: up to 32768 with 25 MHz bandwidth per channel allowing spectral resolution ≈ 0.76 KHz @ 25 MHz bandwidth (rect. win.). With smaller BW, available resolution is higher accordingly.
- FFT windowing support
- FFT overlapping integration mode
- Raw IQ sample recording mode

USRP X300 at RT-32

Real time spectrum monitoring

Frequency switching postprocessing applied

TwinRX RF daughterboard

VIRAC High Performance Computing (HPC) cluster used for interferometric data processing

Rack-mounted unit with 30 nodes:

- 8 CPU x 2 Cores Intel Xeon E5-2630 v3: Total 480 Cores
- 128GB RAM per diskless node
- Total 3840 GB RAM available
- Debian Linux, shared NFS, rsh infrastructure,
- 40Gb/s Infiniband network

10 Gb/s link to the GEANT network
288 TB Disk storage (FlexBuff)
JIVE's SFXC correlator

International LOFAR telescope (ILT) extended to Latvia

VIRA

- In total 51 station
- 38 in the Netherlands
- 13 in other countries
- New station in Irbene complex
- Since 19 June of 2017 VIRAC is observer in the ILT

RFI measurements made by ASTRON head of technical group Nico Ebbendorf in Irbene site, dedicated to the future LOFAR station

alle .

3 RFI Test setup and procedure

3.1 RFI Test setup

A practical test setup has been compiled using LOFAR type antennas and a spectrum analyzer as a receiver. With this setup, a good impression can be made of the RF spectrum with respect to strong RFI signals and general spectrum environment within the LOFAR frequency bands. The LOFAR frequency range is divided in a low-band and high-band range. Each band is using a specific

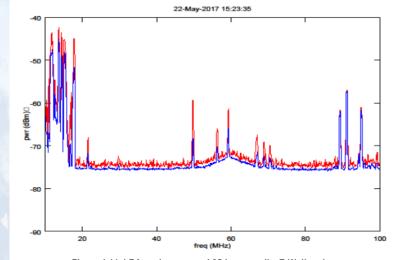

antenna. A single, standard Low-Band production anterna (LBA) is used in the test setup to cover the lowband range from 10 MHz to 100 MHz. The LOFAR high-band anterna system is made of 96 tiles with 16 individual anterna elements in each tile. For this test setup, a prototype of a single High-Band Anterna element (HBA) is used to cover the high-band frequency range from 110 MHz to 240 MHz. Figure 3-1 showing a typical setup for LBA (left) and HBA (right) anternas. An external DC power supply is

Figure 3-1 showing a splical setup for Lan (with and nock right) attentiates, net extension to be power subpy is used to power-up the LNA via a bias-T and the coasial cable. Power to supply the mains to the test equipment has been provided by a portable power generator and a 50-meter long extension cable. A laptop, running a specific software program (Linux OS) is used for equipment control and data storage (Figure 3-2).

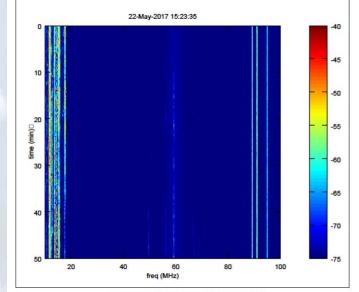
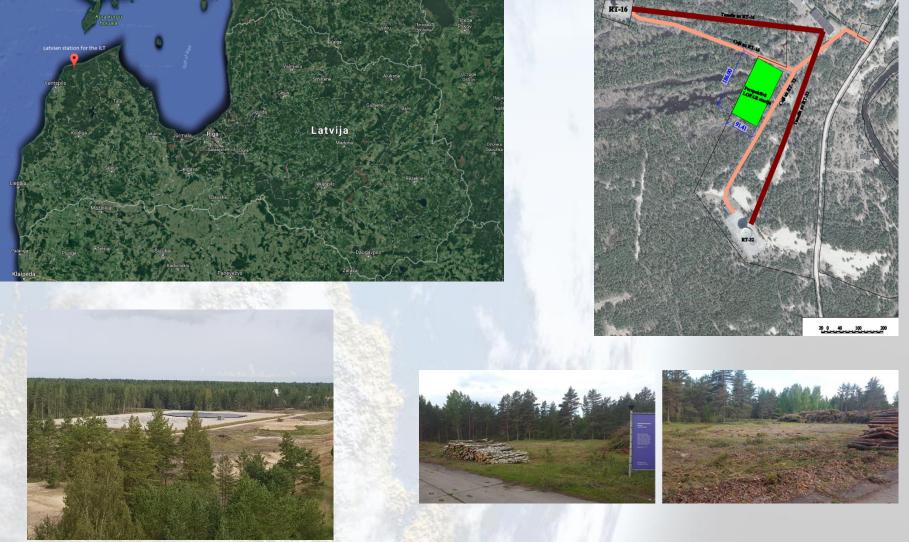


Figure 3-1, LBA and HBA antenna as used in this setup



International LOFAR telescope (ILT) extended to Latvia

Site Acceptance Test

Site Acceptance Test (SAT) Station LV614 (Irbene/ LOFAR-LV)

Signature sheet

Location: Station LV614 LOFAR-LV, Irbene, Ventspils district, Latvia

Project/Reference: Agreement No./Nr. SM17-145 from 29.11.2017 on performance of the project: "Development of next-generation sensor programmable LOFAR radio telescope of Ventspils University College (identification No. VeA 2017/17/VP)". Decision No. VeA 2017/17/VP-02.

VENTSPILS UNIVERSITY of APPLIED SCIENCES hereinafter referred to as the "Buyer"

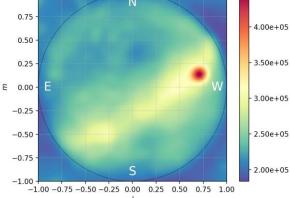
and ASTROTEC HOLDING B.V., hereinafter referred to as the "Supplier",

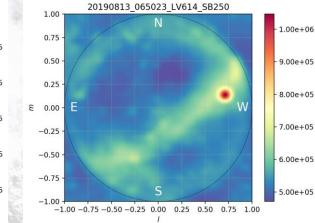
agree that the international LOFAR station LV614 Irbene / LOFAR-LV successfully passed the Site Acceptance Test (SAT) on the condition that the Station Validation Report as a result of this SAT will be transferred to Buyer within 30 days after signing and on the condition that, if applicable, any open actions and issues mentioned in this SAT have been closed within three month after signing of this SAT.

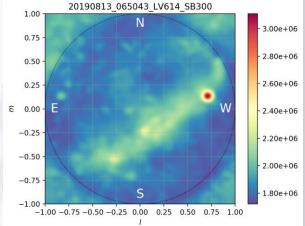
The name of the station	LV614					
The country or geographical area in which	Latvia (Irbene)					
The geographical coordinates of each trans	LONG 21 E 51 21.0					
constituting the station latitude and longit	LAT 57 N 33 25.4					
The antenna type (Co-pollar radiation	LB antenna array:					
pattern) and dimensions	96 half-wavelength crossed dipoles @ 1.7 meter high;					
	HB antenna array:					
	96 tiles with 16 crossed half-wavelength bowtie dipoles @ 0.6					
	meter high					
The effective area of the antena and	LB: 3200 square meters (30 MHz); all azimuths; the angle of					
angular coverage in azimuth and	elevation is between 0° and 90°;					

angular coverage in azimuth a elevation

elevation is between 0° and 90°; HB: **2400 square meters (120 MHz);** all azimuths; the angle of elevation is between 0° and 90°


The class of station	Complete ILT station			
The overall receiving system noise	HB:			
temperature, in kelvins, referred to the	395 Kelvin (mode 5)			
output of the receiving antena	177 Kelvin (mode 6)			
	122 Kelvin (mode 7)			
	LB:			
	5503 Kelvin (mode 3 or 4)			


First Measurements (uncalibrated)



20190813_065003_LV614_SB200

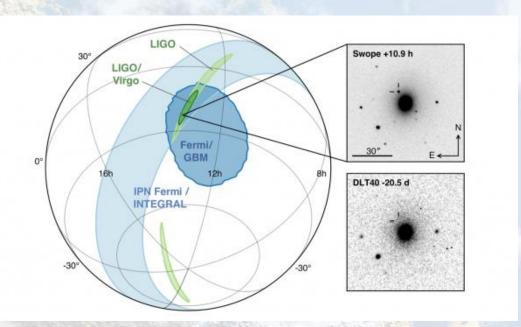
The Milky Way

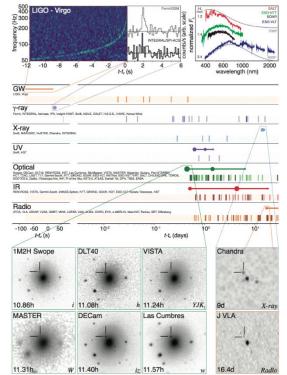
EVN network is extended with VIRAC RT-32 and RT-16

The European VLBI Network (EVN) is an interferometric array of radio telescopes spread throughout Europe (and beyond) that conducts unique, high resolution, radio astronomical observations of cosmic radio sources. It is the most sensitive VLBI array in the world, thanks to the collection of extremely large telescopes that contribute to the network.

- L Band (1.6 GHz)
- C Band (5 GHz)
- M Band (6.7 GHz)
- X Band (8.4 GHz)
- Fringe tests 2012
- Data streaming at 1 Gbps and multiantena regime - 2013
- Regular observations 2015
- EVN member– 2016 October
- Local correlator

Related projects:


RadioNet, RadioNet2, Radionet4, Express, Nexpress, Baltics


EVN telescopes zoom in on the first detection of gravitational waves produced by colliding neutron stars

http://www.jive.nl/evn-telescopes-zoom-first-detection-gravitational-waves-produced-colliding-neutron-stars

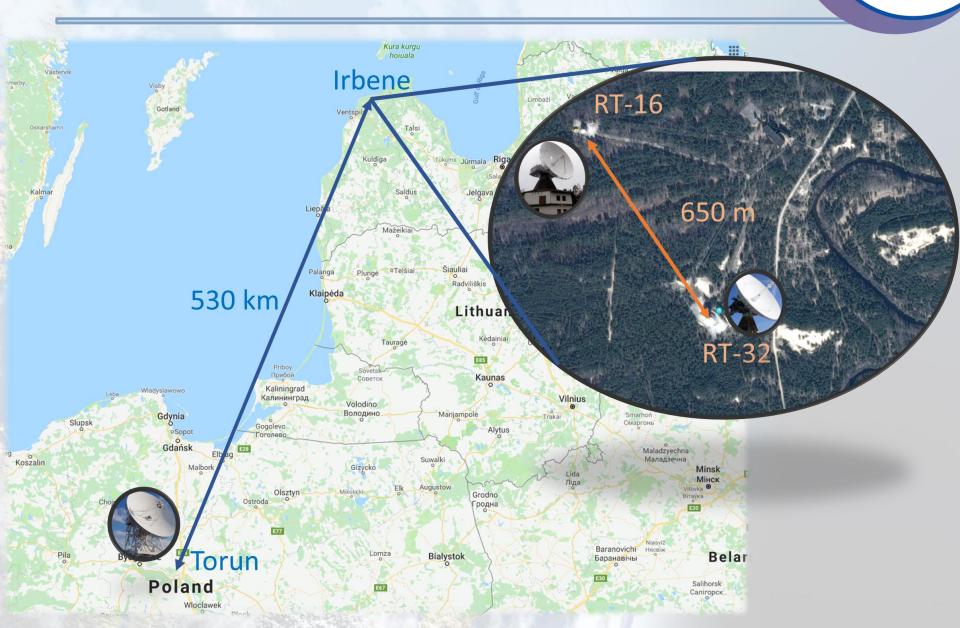
The initial detection of the gravitational signal, named GW170817, was first made on 2017 Aug. 17 at 8:41 a.m. Eastern Daylight Time; by the two identical LIGO detectors, located in Hanford, Washington, and Livingston, Louisiana. The discovery was made using the U.S.-based Laser Interferometer Gravitational-Wave Observatory (LIGO); the Europe-based Virgo detector; and some 70 ground- and space-based observatories.

The timeline of the discovery of the gravitational wave event GW170817, the related short gamma-ray burst GRB170817A, and the optical counterpart SSS17a/AT 2017gfo. The follow-up observations are shown by messenger and wavelength relative to the time t_c of the gravitational-wave event.

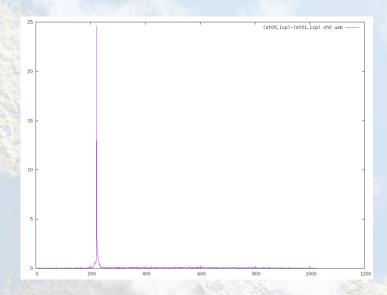
VIRAC collaboration with RadioAstron space telescope: VLBI observations of Active Galactic Nuclei

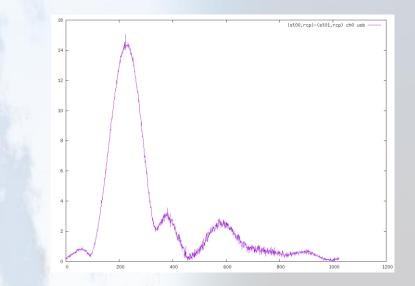
RT-32 participation in the international RadioAstron collaboration started in **December 2015** Observing bands: **18 cm** (1636 – 1692 GHz) and **6 cm** (4804 – 4860 GHz)

The European VLBI Network (EVN) VIRAC RT-32 Spektr-R or RadioAstron



- The European VLBI Network (EVN) is an interferometric array of radio telescopes spread throughout Europe (and beyond) that conducts unique, high resolution, radio astronomical observations of cosmic radio sources (<u>http://www.evlbi.org/</u>).
- The RadioAstron is an international space VLBI project led by the Astro Space Center of Lebedev Physical Institute in Moscow, Russia (<u>http://www.asc.rssi.ru/</u>).


VLBI observations Irbene – Torun 2018



Source 3C84 (quasar)

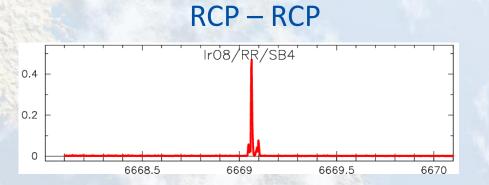
Source W3(OH) (methanol maser)

Experiment date: 2. May 2019, Frequency: 6667.49MHz; Baseline: RT-32 – RT-16; Upper Side Band (USB); Left circular polarization (Lcp-Lcp).

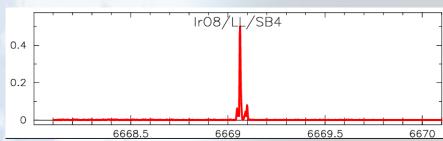
Irbene – Onsala – Torun VLBI observations

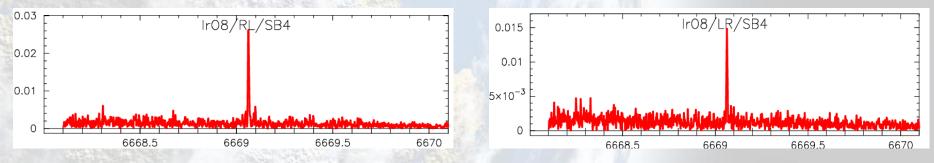
Two 3 hours observations

Date:	June 4, 2019			
Start time:	11:00:00 UTC			
Stop time:	12:59:30 UTC			
Fringe finder:	J0854+2006 (AGN)			
Phase calibrator:	J0940+2603 (AGN)			
Target source:	J0932+2837 (new radio source (AGN?)			

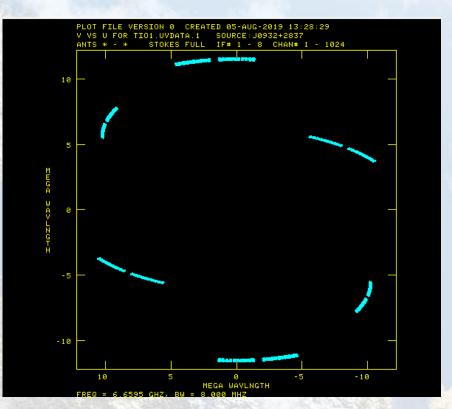

Date:	June 5, 2019				
Start time:	10:00:00 UTC				
Stop time:	11:58:55 UTC				
Fringe finder:	J0102+5824 (AGN)				
Phase calibrator	J2302+6405 (AGN)				
Target source Cepheus A (Galactic methanol maser)					

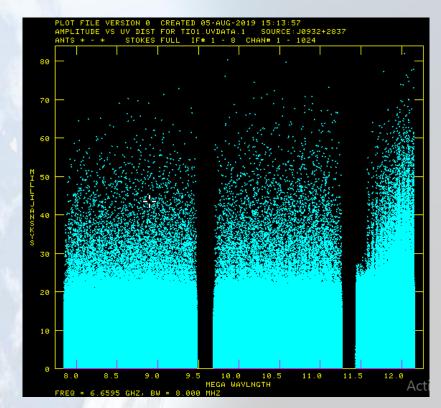
-	Auto correlations			Cross correlations		
tio1_	Ir O8 Tr		Ir-O8	O8-Tr		
6667.49MHz, LSB, Rcp-Rcp	1	1	1	26.74 A P offset: -317	144.1 A P offset: -108	53.03 A P offset: 210
6667.49MHz, LSB, Rcp-Lcp	Cros	s hands		4.396 A P offset: -42	46.13 A P offset: -108	6.706 A P offset: 210
6667.49MHz, LSB, Lcp-Lcp	<u>9</u>	<u>9</u>	<u>9</u>	31.06 A P offset: -317	168.6 A P offset: -108	54.94 A P offset: 210
6667.49MHz, LSB, Lcp-Rcp	Cros	s hands		7.648 A P offset: -317	83.94 A P offset: -108	16.83 A P offset: 209
6667.49MHz, USB, Rcp-Rcp	1	1	1	24.28 A P offset: 317	132.4 A P offset: 108	57.76 A P offset: -210
6667.49MHz, USB, Rcp-Lcp	Cross hands		4.472 A P offset: 59	43.34 A P offset: 108	5.504 A P offset: -210	
6667.49MHz, USB, Lcp-Lcp	<u>9</u>	<u>9</u>	<u>9</u>	28.5 A P offset: 317	162.8 A P offset: 108	51.08 A P offset: -210
6667.49MHz, USB, Lcp-Rcp	Cros	s hands		6.773 A P offset: 317	88.8 A P offset: 108	14.91 A P offset: -209
6699.49MHz, LSB, Rcp-Rcp	2	<u>2</u>	2	27.1 A P offset: -317	135.1 A P offset: -108	58.54 A P offset: 210
6699.49MHz, LSB, Rcp-Lcp	Cros	s hands		5.723 A P offset: -51	44.38 A P offset: -108	4.149 A P offset: -3
6699.49MHz, LSB, Lcp-Lcp	<u>10</u>	<u>10</u>	<u>10</u>	32.22 A P offset: -317	155.8 <u>A</u> P offset: -108	53.87 A P offset: 210
6699.49MHz, LSB, Lcp-Rcp	Cros	s hands		6.814 A P offset: 19	81.91 A P offset: -108	16.3 A P offset: 209
6699.49MHz, USB, Rcp-Rcp	2	<u>2</u>	2	26.37 A P offset: 317	135.8 A P offset: 108	51.22 A P offset: -210
6699.49MHz, USB, Rcp-Lcp			4.446 A P offset: -134	36.92 A P offset: 108	4.097 A P offset: 132	
6699.49MHz, USB, Lcp-Lcp	<u>10</u>	<u>10</u>	<u>10</u>	30.31 A P offset: 317	153.4 A P offset: 108	53.65 A P offset: -210
6699.49MHz, USB, Lcp-Rcp	Cross hands			5.541 A P offset: 318	87.36 A P offset: 108	15.32 A P offset: -209
6731.49MHz, LSB, Rcp-Rcp	<u>3</u>	<u>3</u>	<u>3</u>	25.87 A P offset: -317	135 A P offset: -108	53.87 A P offset: 210
6731.49MHz, LSB, Rcp-Lcp	Cros	Cross hands		5.549 <u>A</u> P offset: 92	33.52 A P offset: -108	4.568 A P offset: 210
6731.49MHz, LSB, Lcp-Lcp	<u>11</u>	<u>11</u>	<u>11</u>	32.97 A P offset: -317	162.7 A P offset: -108	58.03 A P offset: 210
6731.49MHz, LSB, Lcp-Rcp	Cross hands		6.035 A P offset: -317	82.26 A P offset: -108	14.27 A P offset: 209	
6731.49MHz, USB, Rcp-Rcp	<u>3</u>	<u>3</u>	<u>3</u>	25.41 A P offset: 317	139.5 A P offset: 108	52.99 A P offset: -210
6731.49MHz, USB, Rcp-Lcp	Cros	s hands		4.829 A P offset: -17	31.29 A P offset: 108	6.394 A P offset: -209
6731.49MHz, USB, Lcp-Lcp	<u>11</u>	<u>11</u>	<u>11</u>	32.46 A P offset: 317	164.3 A P offset: 108	50.75 A P offset: -210
6731.49MHz, USB, Lcp-Rcp	Cross hands		7.847 A P offset: 317	78.42 A P offset: 108	15.27 A P offset: -209	
6763.49MHz, LSB, Rcp-Rcp	4	<u>4</u>	<u>4</u>	27.31 A P offset: -317	138.9 A P offset: -108	45.87 A P offset: 210
6763.49MHz, LSB, Rcp-Lcp	Cross hands		4.706 A P offset: -63	45.04 A P offset: -108	6.81 A P offset: 210	
6763.49MHz, LSB, Lcp-Lcp	<u>12</u>	<u>12</u>	<u>12</u>	31.99 A P offset: -317	161.6 A P offset: -108	53.94 A P offset: 210
6763.49MHz, LSB, Lcp-Rcp	Cros	s hands		6.922 A P offset: -317	96.8 A P offset: -108	15.09 A P offset: 209
6763.49MHz, USB, Rcp-Rcp	<u>4</u>	<u>4</u>	<u>4</u>	24.98 A P offset: 317	131.5 A P offset: 108	50.59 A P offset: -210
6763.49MHz, USB, Rcp-Lcp	Cross hands			5.11 A P offset: 27	46.33 A P offset: 108	8.289 A P offset: -210
6763.49MHz, USB, Lcp-Lcp	<u>12</u>	<u>12</u>	<u>12</u>	28.55 A P offset: 317	165.5 A P offset: 108	52.14 A P offset: -210
6763.49MHz, USB, Lcp-Rcp	Cros	s hands		6.908 A P offset: 318	101.9 A P offset: 108	13.84 A P offset: -209


Irbene – Onsala – Torun VLBI observations


Specter of target source **Cepheus A Irbene – Onsala** baseline cross-correlation

LCP - LCP

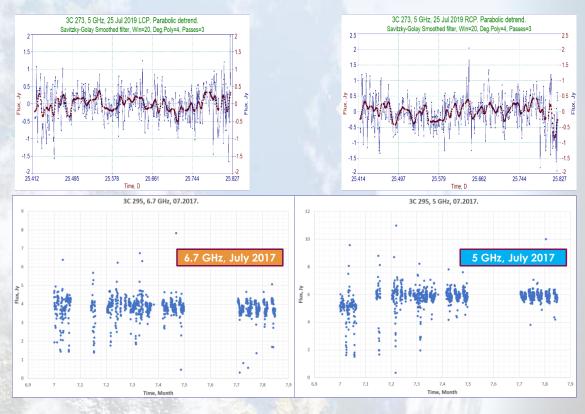

Cross Polarization (RCP – LCP)



x-axis – frequency (MHz), y-axis – relative amplitude

How Irbene – Torun – Onsala uv-plane looks

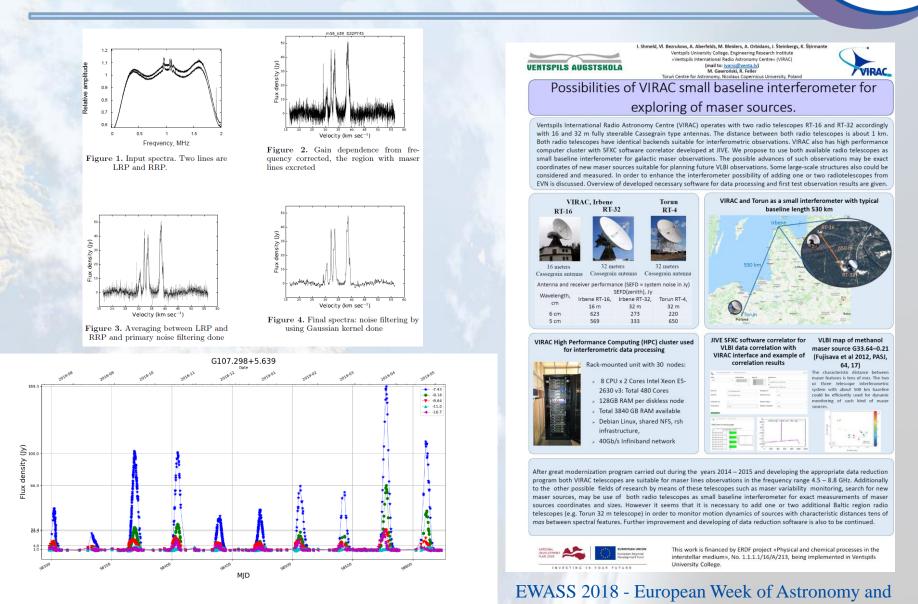
Target source J0932+2837



VIRAC

Preparation for monitoring of intra-day variability of AGN with VIRAC radio telescopes

Research program formulation for study of short-time variability in the eight radio extragalactic sources 3C 273 (quasar / Seyfert galaxy I type) 3C 120 (Seyfert galaxy I type) 3C 345 3C 454.3 (quasars) 3C 446, OJ 287, BL Lac, OT 081 (BL objects) using VIRAC radio telescops and data processing methods based on Fourier and wavelet analysis.


VIRAC

Sukharev A.L., Bezrukovs V.V., Bleiders M.Y., Orbidans A.A., Ryabov

Galactic Maser Observations on Ventspils Radio Telescopes

Space Science 3 – 6 April 2018

VIRAC proposal for EVN observations -

approved

Sources

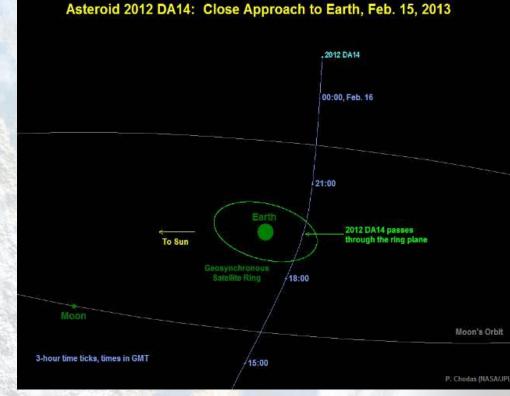
- > G78.122+3.633(IRAS 201126+4104)
- ➢ G90.92+1.49
- > G94.602-1.796(V645 Cyg)

Goals

Structural change studies of G78.122+3.633 and G94.602-1.796

VIRAC

- First imaging of G90.92+1.49
- Proper motion studies



Network status as per 2006-05-02. Image created by Paul Boven -boven@jve.nb. Satelite Image: Blue Mattie Net Generation, courtery of Nasa Visible Earth (visible-earth na

VIRAC and NEO radar VLBI observations

VLBI-radar method was applied to observation of asteroid 2012DA14, which approached the Earth at a distance of about 30 thousand km (*Nechaeva et al 2016*)

February, 15-16, 2013 Asteroid 2012 DA14 Distance: less 30000 km, Diameter: 25-75 m Rotation period: near 9 hours

Trajectory of **asteroid 2012 DA14** during its close approach, as seen edge-on to Earth's equatorial plane. **Its trajectory went inside the ring of geostationary satellites.**

Image credit: NASA/JPL-Caltech, http://www.jpl.nasa.gov

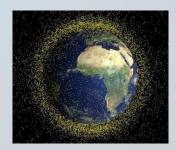


Image from internet resources of University of Southampton:http://www.sout hampton.ac.uk/mediacentre/ne ws/2008/oct/08_185.shtml

Complementary SLR and VLBI-location observations of active satellites on NEO

The combination of several optical and radar:

- radar for good range and radial velocity resolution;
- VLBI for angle and angular rate information;
- SLR for instantaneous range measurements of centimeter or millimeter level precision

VIRAC and VUC

RT-32, 32 m antenna + RT-16, 16 m antenna + VUC 2 m, + Kristal 2 m antenna as an interferometric array with baseline ~ 35 km

Astronomy Institute of the University of Latvia (AI)

Satellite Laser Ranging (SLR) station Riga (located in Riga) Schmidt telescope (located in Baldone)

This work was supported by Latvian Council of Science **Research of Galactic Masers**, Project Nr.: lzp-2018/1-0292

Ventspils – city of innovative environment

attention!

New live for Irbene radio telescopes RT-32 and RT-16

RT-32				
General Data	Azimuth	Elevation		
Motion limits	-328.0° / +328.0°	+2.7° / +95.5°		
Number of Motors	2	2		
Max. velocity (old values 0.16 °/s)	2.8°/s	2.25°/s		
Max. Acceleration during normal operation	$0.5^{\circ}/s^{2}$	$0.5^{\circ}/{\rm S}^{2}$		
Rated Motor torque	230Nm	230Nm		
Pointing and tracking accuracy (old values ~ 1 arc min)	< 10 arc sec	< 10 arc sec		
	RT-16			
General Data	Azimuth	Elevation		
Motion limits	-328.0° / +328.0°	+2.7° / +95.5°		
Number of Motors	2	2		
Max. velocity (old values 0.16 °/s)	5.0°/s	4.0°/s		
Max. Acceleration during normal operation	$2.5^{\circ}/s^{2}$	2.0°/s ²		
Rated Motor torque	60Nm	60Nm		
Pointing and tracking accuracy (old values ~ 1 arc min)	< 10 arc sec	< 10 arc sec		

New live for Irbene radio telescopes RT-32 and RT-16

RT-32

Antenna backup structure renovated and painted; Antenna surface painted and now adjustable; Secondary mirror support structure exchanged.

RT-16

Completely new carbon-fiber 16 m antenna placed on old foundation; New Secondary mirror, supporting legs and vertex cabin.

RT-32 and RT-16

Improved performance of gears and gearboxes; New motors with differential movement control; New angular sensors wish ~1.2 arc sec accuracy; New Antenna control Unit; New Vertex room with conditioning system.

Frontends:

327 MHz receiver, one polarization;

1.6 GHz receiver, one polarization;

4.5 – 8.8 GHz receiver, 2 polarizations with full cryogenic chain and phase calibration unit;

6.8 – 9.4 GHz Solar multi channel spectro-polarimeter, 2 polarizations;

Backends:

DBBC2, in 2016 FILA10G added; Mark5C, and Flexbuff 288 TB.

Network:

Network connection improved to 10 Gbps to GEANT network. (with 40 Gbps in future)