
HIGH ACCURACY METHANOL LINES FOR SEARCH OF SPATIAL-TEMPORAL VARIATIONS OF THE FUNDAMENTAL CONSTANTS

E.A.Alekseev

Institute of Radio Astronomy of NASU, Kharkiv, Ukraine Quantum Radiophysics Department, V.N.Karazin Kharkiv University

Objective: High accuracy measurements of frequencies of some methanol lines

- Extensive search of spatial-temporal variations of the fundamental constants
- Method: observations of atomic and molecular spectral lines in the interstellar medium
- Some transition frequencies of molecules with intramolecular motions have extremely high sensitivity to variations of $\mu = m_p/m_e$
- The most promising probe: methanol CH₃OH sensitivity up to

 $K_{\mu} = -32$

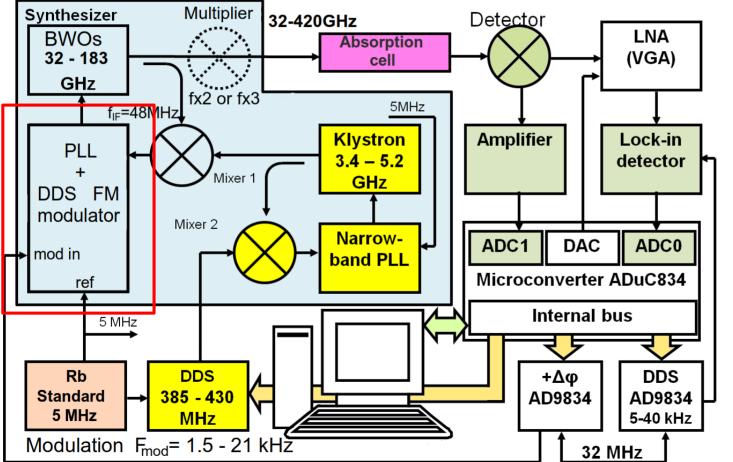
- Relative accuracy of laboratory measurements: 10⁻⁸-10⁻⁹.
- Absolute uncertainty of laboratory measurements: sub kilohertz.
- Main purpose of this work: to improve accuracy of line frequency measurements up to sub kilohertz level for some methanol lines

Methanol lines as a probe for search for spatialtemporal variations of the fundamental constants

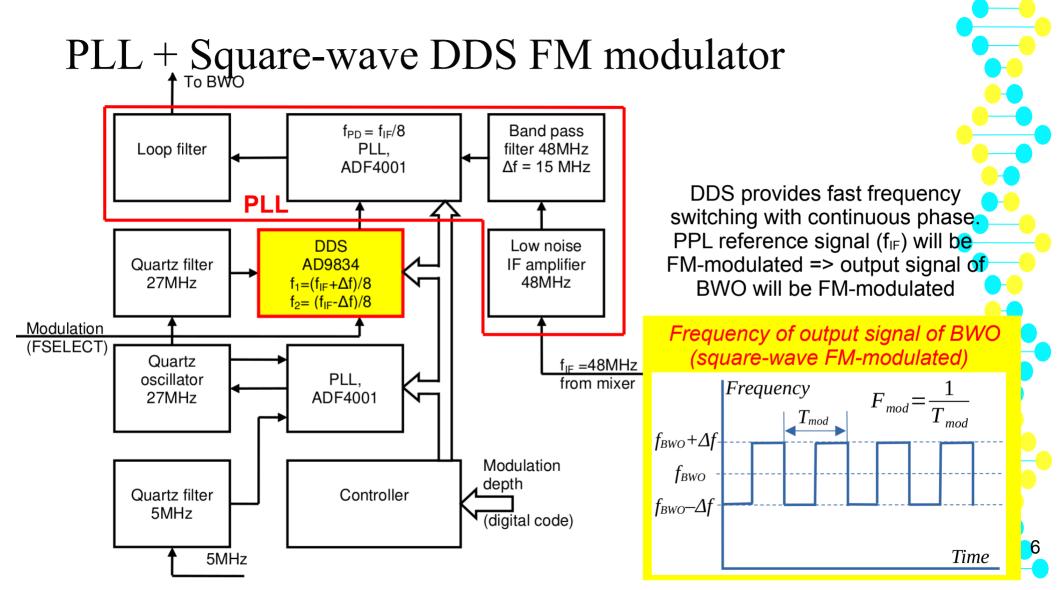
At present abilities of the search of possible spatial-temporal variations of fundamental constants are limited by

- Accuracy of astrophysical data
- Accuracy of laboratory measurements

Transition	V _{Lab1} [1]	V _{Lab2} [2]	V _{Lab1} - V _{Lab1}	v _z =0.88582	Kμ	
3-1 - 2 ₀ E	12178.597(4)	12178.587	0.0 100	6457.985	-32.8	
$0_0 - 1_0 A^+$	48372.4558(7)	48372.460	-0.0 012	25650.6219	-1.0	
0 ₀ – 1 ₀ E	48376.892(10)	48376.887	0.0 050	25652.974	-1.0	•
2-1 − 1₀ E	60531.489(10)	60531.477	0.0 120	32098.233	-7.4	

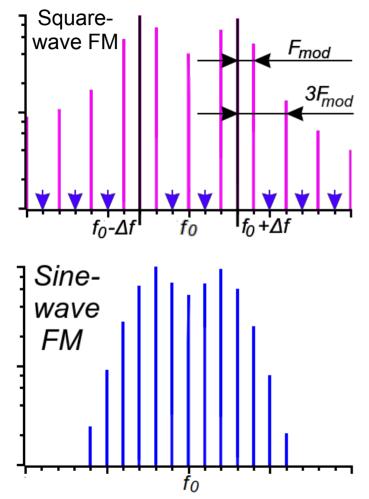

[1] A&A 428, p.1019 [2] Mol Phys 111, p.1923

Principal laboratory accuracy limitation:


- Majority of modern microwave spectrometers operate with Frequency Modulated (FM) source and lock-in detection in the receiving system
- Recorded lineshapes are effected by:
 - Modulation distortions
 - Distortions caused by reflections in absorbing cell (standing wave)
- To reach the highest accuracy of line frequency measurements it is necessary to take into account both kinds of distortions

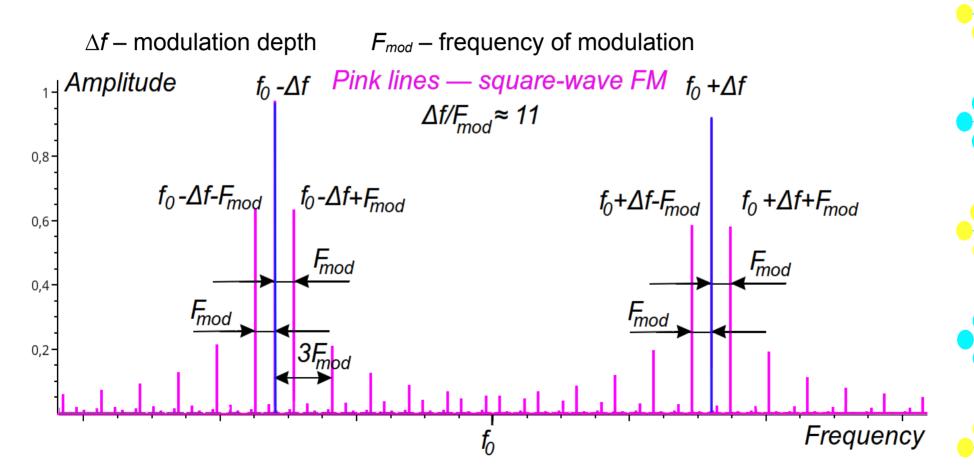
Block-Diagram of the Microwave Spectrometer IRA NASU

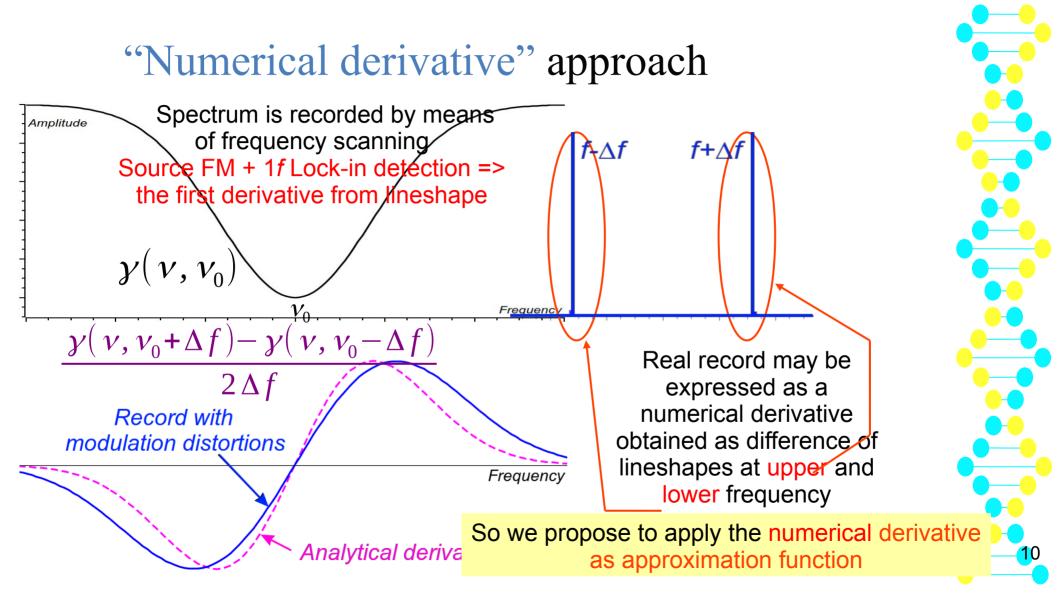
- Absorption
 Spectrometer
- Range 32-420GHz
- Frequency modulated source
- The first harmonic
 1f lock-in detection

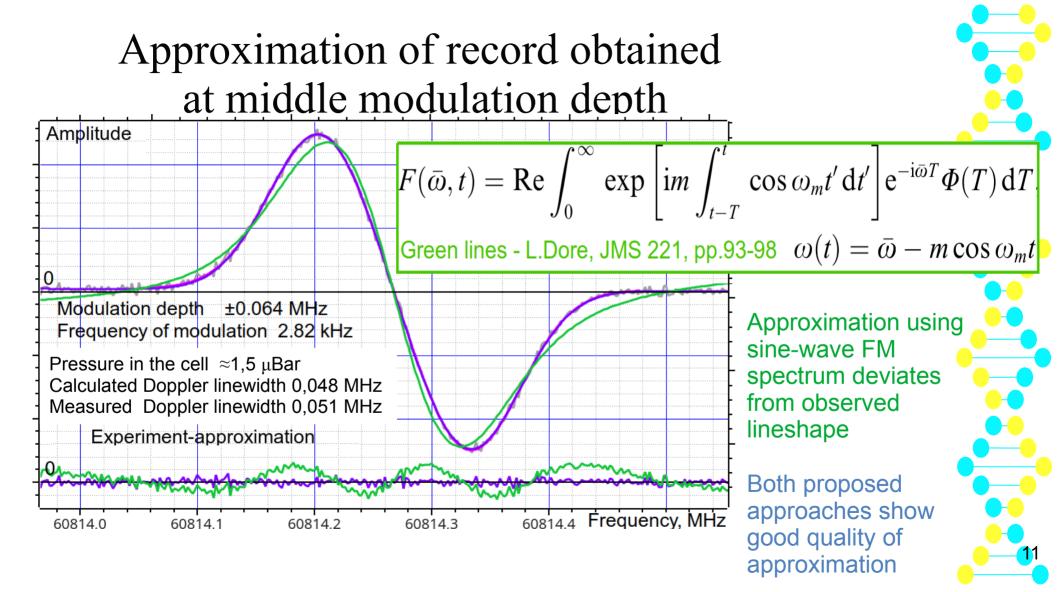


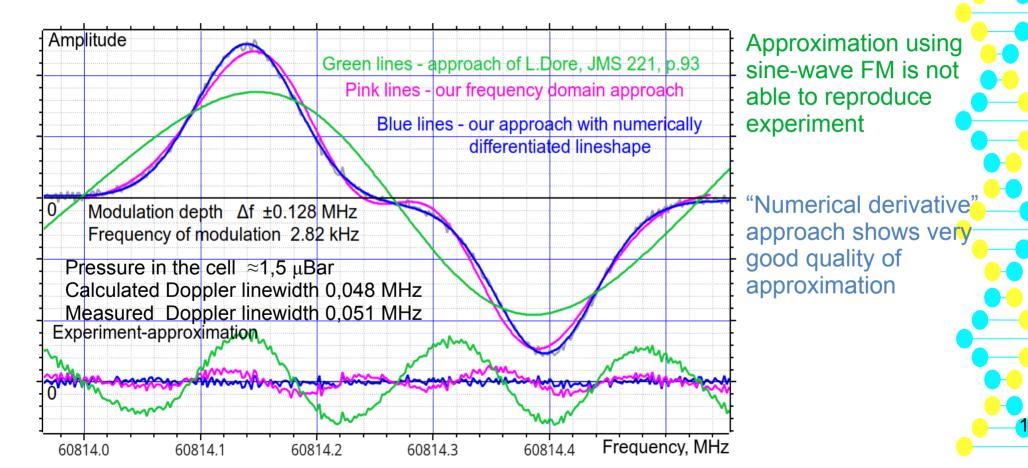
Modulation distortions of lineshape

- In order to take into account lineshape distortions parameters of FM should be known with high accuracy
- Modern Direct Digital Synthesizers (DDS) are capable to provide frequency-shift keying (square-wave FM) between two frequencies known with very high accuracy – Parameters of FM are known with high accuracy
- <u>Problem</u>: all previously elaborated approaches were intended for analysis of lineshapes obtained with sine-wave FM
- To use square-wave FM (by means of DDS) we need to develop corresponding lineshape analysis


Some peculiarities of square-wave FM




- Square-wave FM signal is dominated by odd harmonics of modulation frequency F_{mod}
- In square-wave FM signal even harmonics of modulation frequency are suppressed
- Square-wave FM is suitable for 1*f* lock-in detection only (not suitable for 2*f* lock-in detection!)
- Square-wave FM signal is rather different from usual sine-wave FM signal
- Analysis of spectra records should take into account peculiarities of the square-wave FM (which differs significantly from usual sinewave modulation)


"Frequency domain" approach: Spectrum of FM signal ($\Delta f/F_{mod} \approx 11$)

Approximation of record obtained at large modulation depth

Lineshape distortions caused by reflections in the cell (standing wave)*

Beer–Lambert–Bouguer law $i(v) = i_0(v)e^{-\gamma(v)l}$ With low absorption may be expanded in Taylor series $i(v) \approx i_0(v)(1 - \gamma(v)l)$ where $\gamma(v)$ is true lineshape and l is length of the cell

- Source FM + 1*f* Lock-in detection => Spectra are recorded as the first derivative from true lineshape $i'(v) = i'_0 li'_0 \gamma(v) li_0 \gamma'(v)$
- Usual approach: $i_0 = const$ (since i_0 varies very slowly)

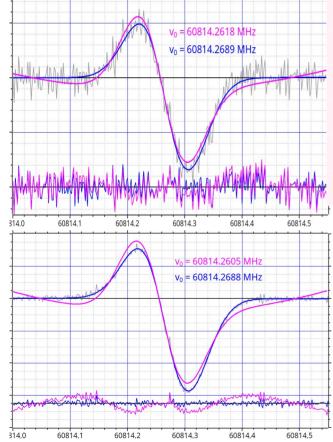
The second term with $\gamma(v)$ vary rather quickly. It introduces appreciable distortions of recorded line. Since i_0 a priori is unknown we don't know ratio between the second and the third terms * An idea of sucl approach was induced by pape of H.M.Pickett Appl.Optics. 19(16) pp.2745-2749

How to take into account distortions of observed lineshape?

Distortions

Principal idea: consider ratio k between lineshape and distortions as fitted parameter. Observed lineshape will be fitted with following equation: $\gamma(\nu, \nu_0 + \Delta f) - \gamma(\nu, \nu_0 - \Delta)$

$$s(v) = (a v+b) + k \gamma(v, v_0) +$$


Baseline Observed variations due to reflections lineshape

Numerical derivative of Lineshape

 2Δ

Usually such distortions lead to frequency determination error up to ±5 kHz and sometimes even ±10 kHz Taking into account distortions caused by reflections in the absorbing cell we obtained the reproducibility of about ±0.1 kHz for OCS J=5-4 transition frequency

Approximation of OCS line obtained under different standing-wave conditions

 Reflections in an absorbing cell lead to distortions (asymmetry) of lineshape

v₀ = 60814.2688 MHz

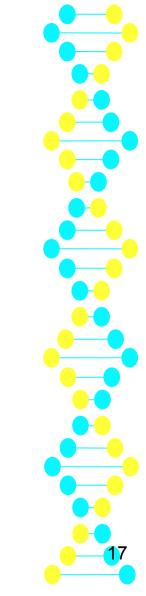
 $v_0 = 60814.2688$ MHz

60814.4

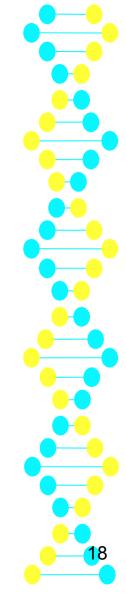
60814 3

60814 2

- Undistorted lines are measured with high accuracy
- Any distortions give errors during frequency measurements up to tens of kHz
- Proposed approach allows to reduce frequency determination error down to unities of kHz


Measured frequency of methanol lines

Transition	v _{Lab} [1]	V _{z=0.88582}	Κ _μ	Our measurements	Correction
3 ₋₁ – 2 ₀ E	12178.597(4)	6457.985	-32.8	Out of range	Correction
$0_0 - 1_0 A^+$	48372.4558(7)	25650.6219	-1.0	48372.4644±0.0005	-0.0086
0 ₀ – 1 ₀ E	48376.892(10)	25652.974	-1.0	48376.8906±0.0005	0.0014
2 ₋₁ – 1 ₀ E	60531.489(10)	32098.233	-7.4	60531.4905±0.0005	-0.0015


Values of all frequencies were considerably corrected !

Conclusions

- Measured frequencies of three methanol lines were considerably improved
- Improvement was achieved by application of
 - DDS that allows to use square-wave FM with modulation parameters known with high-accuracy
 - "Numerical derivative" which gives very high quality of approximation at all values of modulation depth including also sub-Doppler resolution measurements using Lamb-dip technique

Thank you for your attention!

